GENETIC CODE AND GENE EXPRESSION

BY:
HIMANSHU LATAWA
BIOLOGY LECTURER
G.G.S.S.SCHOOL
SIRHIND MANDI
anshu223@gmail.com

Punjab EDUSAT Society {PES}
WHY GENETIC CODE?

Punjab EDUSAT Society {PES}
GENETIC CODE

- SEQUENCE OF BASE TRIPLET IN DNA

- INFORMATION FOR PROTEIN SYNTHESIS FLOWING FROM DNA EXISTING IN PARTICULAR SEQUENCE OF BASE IN DNA STRANDS.

- AMINO ACIDS=20, BASES=4
- SINGLE BASE CODING=4 A. ACIDS
- IF 2 BASES CODE THEN

Punjab EDUSAT Society {PES}
TRIPLET BASE CODE

<table>
<thead>
<tr>
<th>First letter</th>
<th>Second letter</th>
<th>Third letter</th>
<th>Protein(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>U</td>
<td>UU</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UUC</td>
<td>Serine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UUA</td>
<td>Leucine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UUG</td>
<td>Leucine</td>
</tr>
<tr>
<td>C</td>
<td>U</td>
<td>UU</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UUC</td>
<td>Serine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UUA</td>
<td>Leucine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UUG</td>
<td>Leucine</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>CCU</td>
<td>Leucine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCC</td>
<td>Leucine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCA</td>
<td>Proline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCG</td>
<td>Proline</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>ACU</td>
<td>Methionine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACC</td>
<td>Methionine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACA</td>
<td>Methionine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACG</td>
<td>Methionine</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>GCU</td>
<td>Valine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCC</td>
<td>Valine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCA</td>
<td>Alanine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCG</td>
<td>Alanine</td>
</tr>
</tbody>
</table>

Punjab EDUSAT Society {PES}
CHARACTERISTICS OF GENETIC CODE

1. TRIPLET NATURE.

2. NO OVERLAPPING
 AUGCCUGCACGCUUUAGAGGAUGA

3. NO PUNCTUATION

4. UNIVERSALITY OF GENETIC CODE

5. DEGENERACY - MORE THAN ONE CODE FOR ONE A.ACID

6. TERMINATOR CODONS - UAA, UAG & UGA

7. START CODON - AUG

8. COLINEARITY OF GENETIC CODE & POLYPEPTIDE

Punjab EDUSAT Society {PES}
• **GENE**: UNIT OF INHERITANCE THAT SPECIFIES EXPRESSION OF A PARTICULAR TRAIT.

• **GENE EXPRESSION**: MOLECULAR MECHANISM BY WHICH A GENE SHOWS ITS POTENTIAL IN PHENOTYPE OF AN ORGANISM

• GENES EXPRESS CHARACTERISTICS THROUGH ENZYMES.

• IN AN ORGANISM, EACH GENE PRODUCES A SPECIFIC ENZYME WHICH CONTROLS A SPECIFIC METABOLIC ACTIVITY.
• GENES PROVIDE INSTRUCTIONS FOR BUILDING NUCLEIC ACIDS AS WELL AS PEPTIDES.

• CONSISTS OF SYNTHESIS OF SPECIFIC RNA’s, POLYPEPTIDES STRUCTURAL PROTEINS WHICH CONTROL THE STRUCTURE & FUNCTIONING OF SPECIFIC TRAITS.

• GENETIC MATERIAL CONTAIN NUMBER OF GENES.

• REPLICATION & EXPRESSION ARE TWO CHARACTERISTIC OF GENETIC MATERIAL.
MECHANISM OF GENE EXPRESSION

• GENE CONTAINS BLUE PRINT OR CODE FOR POLYPEPTIDE IN FORM OF SEQUENCE OF BASE PAIRS.

• TRANSFERS ITS CODE TO mRNA BY TRANSCRIPTION.

• mRNA BINDS TO RIBOSOMES & WITH SUITABLE tRNA SELECTS REQUIRED A. ACIDS & LINK TO FORM PARTICULAR PROTEIN BY TRANSLATION.

• POLYPEPTIDE CHAIN MAY ACT AS STRUCTURAL PROTEINS OR PHENOTYPIC CHARACTER.
• POLYPEPTIDE CONTRIBUTES TO MORPHOLOGICAL OR PHENOTYPIC CHARACTERS OF A CELL & ORGANISM.

TRANSCRIPTION

<table>
<thead>
<tr>
<th>GENE</th>
<th>r RNA</th>
<th>TRANSLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>m RNA</td>
<td>m RNA</td>
<td></td>
</tr>
<tr>
<td>t RNA</td>
<td>t RNA</td>
<td></td>
</tr>
</tbody>
</table>

→ POLYPEPTIDE

ORGANELLE

ENZYME

PROTEINACEOUS

BIOCHEMICAL
GENE EXPRESSION IN VIRUSES

• **VIRUS STRUCTURE:**
 - **ENVELOPE:** OUTER LOOSE COVERING COMPOSED OF PROTEINS.
 - **CAPSID:** PROTEIN COAT THAT SURROUNDS THE NUCLEOID & ENZYME.
 - **NUCLEOID:** NUCLEIC ACID [DNA OR RNA] IS CALLED NUCLEOID.
BACTERIOPHAGE

- VIRUSES WHICH ATTACK BACTERIAL CELLS ARE BACTERIOPHAGES

- STRUCTURE OF BACTERIOPHAGE

- TADPOLE LIKE VIRUS CONSISTING OF A HEAD AND A TAIL.

Punjab EDUSAT Society {PES}
• HEAD HAS OUTER COAT OF PROTEIN ENCLOSING SINGLE MOLECULE OF DNA WHICH IS DOUBLE HELIX & COILED.

• TAIL IS NARROW & HAS TAIL SHEATH

• TAIL FIBRES ARE ALSO PRESENT.
• **GENE EXPRESSION**: Viral genome carries genetic information for formation of new viruses but has no machinery to do so.

• Virus must infect living cells & use their cellular machinery for synthesizing new viruses.

• Expression of viral genes is regulated in two ways:

 • **LYTIC CYCLE**
 • **LYSOGENIC CYCLE**

Punjab EDUSAT Society {PES}
THREE STAGES OF BACTERIOPHAGES HAVE BEEN IDENTIFIED:

EXTRACELLULAR VIRIONS: COMPLETE VIRUS PARTICLE PRIOR TO INFECTION

VEGETATIVE PHAGE: FREE HAVING AUTONOMOUS REPLICATION

PROPHAGE: BECOME INSERTED WITH BACTERIAL DNA & IS REPLICATED ALONG WITH IT.

Punjab EDUSAT Society {PES}
LYTIC CYCLE

• **PROCESS:**

• **ADSORPTION:** ATTACHMENT OF VIRUS PARTICLE TO SPECIFIC HOST BACTERIAL CELL AT RECEPTOR SITE.

• **PENETRATION:** INJECTION OF NUCLEIC ACID OF VIRION INTO HOST CELL

• CELL WALL HYDROLYZED BY **LYSOZYME ENZYME** PRESENT AT TIP OF TAIL.

• PROTEIN COAT OUTSIDE HOST CELL WALL ARE **GHOSTS**
HOW DO VIRUSES WORK?

1. Viral genome enters host cell.

2. Viral genome is replicated and transcribed.

3. Viral mRNAs are translated and proteins processed.

4. Particles assemble inside host, then burst or bud to exterior.

if host cell is a bacteria, virus is a bacteriophage

viral replication is a genetic process

Free particles in tissue or environment

Host cell genome

DNA

mRNA

Punjab EDUSAT Society {PES}
• **ECLIPSE STAGE**: VIRAL DNA OCCURS INSIDE HOST CELL.

• SUPPRESSION OF ALL CELLULAR ACTIVITY IN HOST CELL.

• SYNTHESIS OF NEW ENZYMES BY PHAGE DNA UTILIZING AMINO ACID POOL OF HOST CELL.

• ENZYME USED TO DESTRUCT DNA OF HOST. FRESH DNA SYNTHESIZE VIRAL PROTEINS & LYSOZYME.
• **MATURATION:** ASSEMBLY OF COMPONENTS INTO COMPLETE VIRIONS. HEAD & TAIL ASSEMBLED FIRST & THEN ASSEMBLE TO FORM NEW PHAGE PARTICLES.

• **LYSIS & RELEASE OF NEW VIRIONS:** CELLWALL BURSTS & RELEASES VIRIONS & TERMED AS LYSIS. NO. OF VIRIONS PRODUCED PER CELL IS SPECIFIC & TERMED AS **BURST SIZE.**
LYSOGENIC CYCLE

• SHOWN BY LAMBDA PHAGE.

• HAS HEXAGONAL HEAD WHICH CONTAINS DOUBLE STRANDED CIRCULAR DNA & CYLINDERICAL HOLLOW TAIL WHICH LACK TAIL FIBRES.

• DNA GETS ATTACHED TO BACTERIAL DNA, BECOME S INACTIVE &IS PROVIRUS OR PROPHAGE.
• **PHAGE DNA** BECOMES INACTIVE DUE TO REPRESSOR PROTEIN BY PHAGE DNA WHICH CAUSES REPRESSION OF VIRAL GENES.

• **PROPHAGE** REPLICATES ALONG WITH BACTERIAL DNA & DISTRIBUTED TO DAUGHTER CELLS.

• OCCASIONALLY PROPHAGE MAY GET DISSOCIATED FROM BACTERIAL DNA & BECOMES ACTIVE TO CARRY LYTIC CYCLE.
Step 1. Attachment
Phage attaches to
the cell surface of
a bacterium.

Step 2. Penetration
Phage DNA enters
the bacterial cell.

Prophage

Step 3. Integration
Phage DNA integrates into
bacterial DNA.

These cells may exhibit
new properties

Step 4. Replication
Integrated prophage replicates when
bacterial DNA replicates.
• ACTIVE PHAGE DNA IS CALLED VEGEPHAGE OR TEMPERATE PHAGE.

• CARRIES ON ALL EVENTS OF LYTIC CYCLE FORMING MORE PHAGES DUE TO LYSIS OF HOST CELL.

• BACTERIUM CONTAINING PROPHAGE HAS POTENTIALITY TO GET LYSED BY ACTIVITY OF VIRAL DNA.
GENE EXPRESSION IN PROKARYOTES

- **BACTERIAL CHROMOSOME:**
 - NUCLEOID SIMILAR TO SINGLE EUKARYOTIC CHM.
 - IT IS CIRCULAR REPRESENTED BY SINGLE DOUBLE STRANDED DNA MOLECULE NOT BOUNDED BY NUCLEAR MEMBRANE.
 - NUCLEOID ATTACHED TO MESOSOME REPLICATES & PASSED TO DAUGHTER CELLS.

Punjab EDUSAT Society {PES}
• **GENE RECOMBINATION IN BACTERIA:**
shows genetic recombination in one of three ways:

• **TRANSFORMATION:**
phenomena by which DNA isolated from one type of cell, when introduced into another type is able to bestow some of properties into the latter.

Punjab EDUSAT Society {PES}
DNA fragments from donor cells

1. Recipient cell takes up donor DNA

Recipient cell

Chromosomal DNA

2. Recombination occurs between donor DNA and recipient DNA

Degraded unrecombined DNA

Genetically transformed cell

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.
• **TRANSDUCTION**

• Transfer Of Genetic Material From One Bacterium To Another Through Bacteriophage.
• **CONJUGATION**

• UNIDIRECTIONAL TRANSFER OF DNA FROM ONE CELL TO ANOTHER THROUGH A CYTOPLASMIC BRIDGE CALLED **CONJUGATION TUBE**

• EQUIVALENT TO SEXUAL MATING IN EUKARYOTES.

• TWO BACTERIAL HAPLOID CELLS COME CLOSE TO EACH OTHER.

• GENE EXCHANGE OCCURS BY TWO METHODS:
A new copy of F, generated by replication, is transferred to a recipient cell.

A second copy of F remains in the donor cell.
STERILE MALE METHOD

• PLASMID HAVING FERTILITY FACTOR UNDERGOES REPLICATION.

• COPY OF IT TRANSFERRED TO RECIPIENT CELL THROUGH CONJUGATION TUBE

• RECIPIENT CELL CHANGES INTO DONOR CELL

• F FACTOR CARRIES GENES FOR PRODUCING PILI & TRANSFER OF DNA

Punjab EDUSAT Society {PES}
• **FERTILE MALE METHOD:**
 AT TIMES F FACTOR INTEGRATES WITH BACTERIAL CHROMOSOME

• **INTEGRATED PLASMID CALLED EPISOME**

• **DONOR CELL HAVING FERTILITY FACTOR INTEGRATED IS Hfr**

• **BACTERIAL CHM .REPLICATES & COPY OF IT PASSES INTO RECIPIENT CELL**
F plasmid - small, circular, extrachromosomal DNA molecule

(a) Conjugation and transfer of an F plasmid from an F+ donor to an F- recipient

(b) R-plasmid carries genes for antibiotic resistance
GENE EXPRESSION IN EUKARYOTES

1. Synthesis of mRNA in the nucleus
2. Movement of mRNA into cytoplasm via nuclear pore
3. Synthesis of protein

DNA → mRNA → Ribosome → Polypeptide → Amino acids

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Punjab EDUSAT Society (PES)
• EUKARYOTIC GENOME CONTAINS DNA MANY TIMES AS COMPARED TO PROKARYOTIC GENOME.

• MOST OF DNA NON FUNCTIONAL & TERMED AS EXCESS DNA OR REPETITIVE DNA

• GENOME IN EUKARYOTES CONTROLS & DIVISION OF CELLS, DIFFERENTIATION & SPECIALISATION IN EUKARYOTES, SOME OF BASES DONOT CODE FOR AMINO ACIDS.

• THEY ARE INSERTED BETWEEN THE BASES WHICH NORMALLY CODE FOR AMINO ACIDS

Punjab EDUSAT Society {PES}
• CODING SEGMENTS ARE EXONS & NON CODING INSERTS ARE INTRONS.

• INFORMATION IS IN SPLIT PIECES.

• UNWANTED mRNA REGIONS ARE REMOVED & FUNCTIONAL REGIONS ARE JOINED & PROCESS TERMED AS SPLICING.
THANKS