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Continuity
Def.  In simple words , a function is continuous 
at a fixed point if we can draw graph of the 
function at around that point without lifting the 
pen from the plane of the paper.

Another Def. : A function is continuous at x=a if 
the function is defined at x=a and  if the value 
of the function at x=a is equal the limit of the 
function at x=a. 
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Discontinuity
Note  1 :  If  f is discontinuous at x=a    then  a 
is called point of discontinuity.

Note  2 : A function f is discontinuous at x=a in
following cases :

(i) f is not defined at x=a   i.e. f(a) does not 
exist.

(ii) Limit of f(x) at x=a does not exit.

(iii) Limit of f(x) at x=a exits but not equal to 
f(a).
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Cases of 

Discontinuity
Limit of f(x) at x=a does not exit. 

This happens in following cases :

Case I

Case II

Case III
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Kinds of 

Discontinuity
1. Removable  Discontinuity : Some times  a 
function  f is not defined at x=a or f(a) is 
defined in such a way that it is not equal to 
limit of f(x) at x=a, then this discontinuity can 
be removed  by defining f(a) in such a way that 
it may equal to limit of f(x) at x=a.

2. Non Removable  Discontinuity : This is of 
two kinds. (i) Discontinuity of first kind  

(ii) Discontinuity of second kind
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Non Removable  

Discontinuity
(i)Discontinuity of first kind :

(ii) Discontinuity of second kind :
or
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Continuity in interval
(i) Open interval : A real valued function f defined on  

open interval (a,b)is said to be continuous in on (a,b) 

if it is continuous  at x=c for all c∈ (a,b)

(ii) Closed interval : A real valued function f defined 

on  closed interval [a,b]is said to be continuous in on 

[a,b] if  (i) f is right continuous at x=a.             

(ii) f is left continuous at x=b.

(iii) f is continuous  at x=c for all c∈ (a,b)

Such have continuous graph on [a,b]
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Algebra of 

Continuity
If  f , g are two continuous functions at x=a 

then

(i)  kf is continuous function at x=a  ,k ∈R.

(ii) (f ±g) is continuous function at x=a .

(iii)  fg is continuous function at x=a .

(iv) f/g is continuous function at x=a , g(a) ≠

0
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Prove that

A constant function is continuous everywhere. 

Let f(x) =c be a constant function x∈R.

Let a be any real number. 

Now 

Also f(a) =c.

⇒ f is continuous everywhere.
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Is the function f(x)=x2-sin x+5 

continuous at x=π

We have f(x)=x2-sin x+5 .

= π2-sin π+5 

= π2-0+5  = π2+5  

Also f(π)=π2-sin π+5 = π2-0+5  = π2+5 

∴ ⇒f is 

continuous at π
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Board Questions
Q. 1   If f(x) is continuous at x=0, 

find the value of  k.                    (Mar 
2008)
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Board Questions
Q. 1  (Mar 2008)

If f(x) is continuous at x=0, find the value of  
k.

Sol.  
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Board Questions
Sol.

Now  f(0) = k. (given)

Because function is continuous at x=0  

So Limiting value of f(x) is same as  f(0).

So k=2
Ans.
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Board Questions
Q. 1   Discuss continuity of f(x) at x=0    (Mar 
2007)
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Board Questions
Q. 1   Discuss continuity of f(x) at x=0    (Mar 2007)

Sol. 
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Board Questions
Sol. 
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Board Questions
Sol.
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Board Questions
Sol.
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Board Questions
Discuss the continuity of f(x)  at x=0 , where

(Mar
2003) 

Solution :- Here function contain modulus of x 
hence we have find its limit from both sides

because I x I=x if x≥0 and  I x I =-x if x<0 .
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Continued

Sol. 20
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Continued

Right limit
21
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Continued

So      L.H.L.  ≠ R.H.L.

Limit at x=0 does not exist.

Hence from   def.  of continuity f(x) is 
discontinuous at x=0.

Here we need not to find f(0).

22
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Question

Q.No. 1   Find K so that function is continuous 
at point  x= π/2

Q. No.2  Examine the continuity at x=0

f(x)=

23

K cos x         if x≠π/2______

Π-2xf(x)=

3            if x= π/2

Sin x – cos x    if x ≠ 0

-1                     if x=0
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Question

Q.No. 1

Find the all points of discontinuity of function

Q. No.2Find the value of a and b if function is 
continuous.

24

2x+3      if   x ≤ 0

{2x-3         if  x > 0
f(x) =

f(x)= {
5                 If x ≤ 2

ax + b         if 2< x <10

21               If x≥10
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Differentiation

Introduction

• Increment

• Differential Co-efficient

• Notation

Derivative



19 June 2009 Punjab EDUSAT Society (PES) 26

Definition

• Let f(x) be function defined  then    

If it exit is called differential 

coefficient of y w.r.t x  and is 

denoted as f’(x). 

Derivative

.
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Steps for derivative

• 1. Put y = given function.

• Change  x to ∆x and y to ∆y

• Subtract (1) from (2) and obtain ∆y and 
simplify.

• Divide both sides by ∆x.

• Take limits both sides as ∆x →0 keeping in 
mind 

Derivative

.
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Physical Meaning

• Imagine x is time and f(x) is distance 

travelled in time x.

• Let f(x+∆x) be distance in x+∆x time.

• Then distance f(x+∆x) - f(x) is travelled in 

time ∆x.

• Speed =Distance travelled / time.

• Speed in interval=(f(x+∆x) - f(x) ) / ∆x

• Speed at a point =

Derivative

.
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Geometrical significance

• Let y=f(x) be function 

whose graph in xy

plane is shown by 

curve PQ 

o

Y=f(x)
P

Q

Derivative
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Geometrical significance

• Let y=f(x) be function 

whose graph in xy

plane is shown by 

curve

• Let P(c,f(c)) and 

Q(c+h, f(c+h)) be 

ponits on curve

o

Y=f(x)
P

Q

Derivative
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Geometrical significance

• Let y=f(x) be function 

whose graph in xy

plane is shown by 

curve

• Let P(c,f(c)) and 

Q(c+h, f(c+h)) be 

ponits on curve

• PT is tangent to curve 

at P o

Y=f(x)
P

Q

T

Derivative
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Geometrical significance

• Let y=f(x) be function 
whose graph in xy
plane is shown by 
curve

• Let P(c,f(c)) and 
Q(c+h, f(c+h)) be 
ponits on curve

• PT is tangent to curve 
at P

• PQ  chord  meet OX  
at S

o

Y=f(x)
P

Q

T S

Derivative
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Geometrical significance

• PQ chord meet OX 

at S

• Draw  PM⊥OX,      

QN ⊥OX,  PR ⊥QN.

• ∠XSQ= ∠ RPQ=θ

• ∠XTP=α

• PR=MN=ON-OM 

=c+h-c = h

• RQ=QN-RN=QN-MP 

= f(c+h)-f(c)

o

Y=f(x)
P

Q

T S M N

R

θ

θ

Derivative
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Geometrical significance

• PQ chord meet OX at 

S

• Draw  PM⊥OX,      QN 

⊥OX,  PR ⊥QN.

• ∠XSQ= ∠ RPQ=θ

• ∠XTP=α

• PR=MN=ON-OM 

=c+h-c = h

• RQ=QN-RN=QN-MP  

= f(c+h)-f(c)

o

Y=f(x)
P

Q

T S M N

R

θ

θ
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Geometrical significance

O
XX’

Y

Y’

P

Q

T

S

M N

R

θα

•Now  if Q approaches P 

along the curve the line PQ 
become the tangent to the 

curve at P in limiting case 

θ→α as h →0
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Left hand derivative at a point

• A function f is said to be derivable to the left of 

a point c ∈ Df iff

exists finitely and is denoted by Lf’(c ) and is 

called left hand derivative of f w.r.t. x at x=c

• .

Derivative

• .
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Right hand derivative at a point

• A function f is said to be derivable to the 

right of a point c ∈ Df iff

exists finitely and is denoted by Rf’(c ) and 
is called right hand derivative of f w.r.t. x 
at x=c

Derivative

.
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Derivative at a point

• A function f is said to be derivable  at a 

point c ∈ Df iff

exists finitely and is denoted by f’(c ) and is 
called derivative of f w.r.t. x at x=c

Derivative
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Derivative and Continuity

• A function which is derivable at a 

point is a continuous at that point. 

But its converse may or may not 

be true.

Derivative
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Some Typical examples

• 1 . Show that the function defined by 

f(x) =  3-2x      if x<2     

3x-7     if x≥2 

is continuous at x=2 but not derivable at 
x=2.

Derivative



19 June 2009 Punjab EDUSAT Society (PES) 41

Another example

• Find left and right derivatives of

f(x) = 2x+1      if x<1

6x+7     if x≥1  

at x=1 .  Is f is derivable at x=1?

Derivative
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Different names of first 

principle

1.  By First Principle

2.   From Definition

3.  By Delta Method

4.    By Ab-inito

Derivative
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Derivative by First Principle

1. Put y= given function.

2. Change x to ∆x and y to 

∆y

3.Subtract (1) from (2) and 

obtain ∆y and simplify.

4 Divide both sides by ∆x.

5 Take limits both sides as 

∆x →0 keeping in mind 

1 Y=f(x)

2 Y+ ∆y =f(x+ ∆x )

3 Y+ ∆y –y= f(x+ ∆x )-f(x)

4

5

6      

Derivative
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Some Standard Results

.

Derivative
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Some Standard Results

.

Derivative
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Derivative of Trigonometric 

Functions

1 D (sin x ) = cos x

2 D ( cos x) = - sin x

3 D ( tan x )=  sec2 x

4 D ( cot x ) = - cosec2 x

5 D ( sec x ) = sec x .  tan x

6 D ( cosec X ) = - cosec x . cot x

Derivative
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Derivative of Trigonometric 

Functions

1 D (sin ax+b ) = cos (ax+b) .a

2 D ( cos ax+b) = - sin (ax+b).a

3 D ( tan ax+b )=  sec2 (ax+b) .a

4 D ( cot ax+b ) = - cosec2 (ax+b).a

5 D ( sec ax+b) = sec (ax+b) . tan 

(ax+b) .a

6 D( cosec ax+b )= - cosec (ax+b).cot

(ax+b).a

Derivative
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Derivative of Composite Functions

Let f(x) =(gοh)(x)

=g(h(x))

Then f ‘(x) =g ‘(h(x)) .h ‘(x)

Derivative
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Chain Rule

Let  y= f(t)

And  t = g(x)  be two functions.

We want to find derivative of y w.r.t. x

dy /dt =f ‘(t)

dt / dx = g ‘(x) then 

dy /dx = dy /dt * dt /dx

= f ‘(t) * g ‘(x)

= f ‘(g(x))* g ‘(x)

Derivative
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Generalised Chain Rule

Let y = f(t),

t = g(u),

u =h(x),

And we want derivative of y w.r.t. 
x.Then

Derivative

.
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Questions on chain rule

Q No. 1.

Q No. 2
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Questions on Derivative

Q No. 1

Q No. 2
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Important Results of Derivatives

• D( Constant) = 0

• D( u±v) = D(u) ± D(v)

• D(u×v) = u× D(v) + v×D(u)
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Derivative of parametric equations

• Let x = f(t) and  y =  g(t)   be   two  functions  of  t 

• Then
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Questions on Parametric 

function
Q No. 1.

Q. No.  2

=1
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Derivative of one function w.r.t. 

other function

• Put one function of x is equal  to  y           

and put other function of x is equal to 

u     

• Then 
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Example of Derivative of a function 

w.r.t. function

• Differentiate  7x5-11x2 w.r.t. 7x2 – 15x

• Let u= 7x5-11x2  ,   v = 7x2 – 15x
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Derivative w.r.t.  another function

Q No. 1.

Q No. 2 

Differentiate log(xex)  w.r.t.  x log 
x
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Derivative of Implicit Functions

• Explicit functions -- When a relationship 
between x and y is expressed in a way 
that it is easy to solve for y and write y = 
f(x)

• Implicit functions - When a relationship 
between x and y is expressed in a way 
that it is not easy to solve for y and y is 
not expressed in terms of x.
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Examples of Implicit functions

x6 +y6 + 6 x2 y2 =16

ex +ey =ex+y
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Logarithmic  Derivative

Q No. 1

Q No. 2
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Logarithmic  Derivative

Q No. 1

Q No. 2
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Derivative of Inverse T Functions
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Derivative of Inverse T Functions

.
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Derivative of Inverse T Functions

.
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Derivative of Inverse T Functions

.
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Some Important substitutions

• In case of 

( 1 ) a2 +x2 ,  put   x = a tanθ

( 2 ) √ a2-x2 , put   x = a sinθ

( 3 ) √ x2–a2 ,put  x = a secθ
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1 Properties of Inverse T-
Functions

• Sin(sin-1x)= x,  x∈[-1,1] 

and sin-1(sinx) = x , x∈[-π/2, π/2]

Same result is true for other five  

trigonometric ratios
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2 Properties of Inverse T-

Functions

• cosec -1x = sin-1(1/x)  x≥1 or x≤ -1

• cos-1 x = sec-1 (1/x)     x≥1 or x≤ -1

• cot-1x = tan-1(1/x)        x>0
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3 Properties of Inverse T-

Functions

• sin-1(-x) = - sin-1x,      x∈[-1,1] 

• cos-1(-x) = π-cos-1x    x∈[-1,1]

• tan-1(-x) = - tan-1x          x∈R

• cot-1(-x) =  - cot-1x         x∈R

• sec-1(-x) =  π - sec-1x     IxI ≥ 1

• cosec-1(-x) =  -cesec-1x   IxI ≥ 1
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4 Properties of Inverse T-
Functions

• sin-1x    + cos-1x   = 

• tan-1x   +  cot-1x    =

• sec-1x   + cosec-1x   =

•x∈[-1,1]

•x∈R

IxI ≥ 1
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5 Properties of Inverse T-

Functions
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6 Properties of Inverse T-

Functions
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7 Properties of Inverse T-

Functions
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Derivative of Inverse T-

Function
Q No. 1

Q No. 2
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Derivative of Inverse T-

Function
Q No. 1

Q No. 2
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Multiple Angle Formulae

1 Sin 2A = 2 Sin A Cos A

2 Cos 2A = Cos2A – Sin2A 

= 2 Cos2A – 1

= 1 – 2 Sin2A

3 Tan 2A =     2 Tan A

1 – Tan2A
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Multiple Angle Formulae

Sin 3A = 3 Sin A – 4 Sin3 A

Cos 3A = 4 Cos3 A – 3 Cos A

Tan 3A  =   3 Tan A – Tan3 A

1  - 3 Tan2 A
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Multiple Angle Tan Form

Sin 2A =  2 Tan A

1 + Tan2 A

Cos 2A =   1 – Tan2 A

1 +  Tan2 A

Tan 2A  =    2 Tan A

1 – Tan2 A
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Another Form

Sin A = ±

Cos A =±

Tan A = ±



19 June 2009 Punjab EDUSAT Society (PES) 81

Tan (π/4 ±A)

Tan (π/4 + A) = 1 + Tan A

1 – Tan A

Tan (π/4 – A ) = 1 – Tan A

1 + Tan A
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Derivative of T-functions

Q No. 1

Q No. 2



19 June 2009 Punjab EDUSAT Society (PES) 83

Questions

Q No. 1

Q No. 2

Q No. 3
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Questions

Q No. 1

Q No. 2

Q No. 3
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Questions

Q No. 1

Q No. 2

Q No. 3
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Derivatives of Higher order

Q No. 1

Q No. 2
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Derivatives of Higher order

Q No. 1

Q No. 2
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Rolle’s Theorem

Statement:  If a function f(x)  defined on 
[a,b] is such that

(i) f(x) is continuous in closed interval  
[a,b]

(ii) f(x) is derivable in open interval(a,b)

(iii)  f(a)= f(b)

then there exists at least one real 
number c (a,b) such that f’( c)= 0
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Rolle’s Theorem Geometrical 

Interpretation

Let AB be the graph of function y=f(x) 
such that the point A and B of the graph 
correspond to the numbers a and b of the 
interval [a,b]

X

Y

O
M N

P

A B

X

Y

O
M N

P

A B

f(a)

f(a)

f(b)
f(b)

f ( c)
f ( c)
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Rolle’s Theorem Geometrical 

Interpretation

f(x) is continuous in the interval [a,b]

its graph is a continuous curve between 
A  

and B.

X

Y

O
M N

P
A B

X

Y

O
M N

P

A B

f(a)
f(a)f(b) f(b)f ( c)

f ( c)
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Rolle’s Theorem Geometrical 

Interpretation
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Varify Rolle’s theorem in following 

cases

Q No. 1

f(x)=x3+3x2-24x-80 in interval [-4,5]

Q No. 2  

f(x)= sin x-sin 2x in  0 ≤ x ≤ 2π

Q No. 3

Discuss the applicability of Rolle’s
theorem to the function 
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Lagrange’s mean value 

Theorem
Statement:  If a function f(x)  defined on 
[a,b] is such that

(i) f(x) is continuous in closed interval  
[a,b]

(ii) f(x) is derivable in open interval(a,b)

then there exists at least one real 
number c (a,b) such that
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L.M.V. Theorem Geometrical 

Interpretation

Let AB be the graph of function y=f(x) 
such that the point A and B of the graph 
correspond to the numbers a and b of the 
interval [a,b]

X

Y

O
M N

P

A B

X

Y

O
M N

P

A

B

f(a)

f(a)

f(b)
f(b)

f ( c)
f ( c)
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L.M.V. Theorem Geometrical 

Interpretation

f(x) is continuous in the interval [a,b]

its graph is a continuous curve between 
A  

and B.

X

Y

O
M N

P
A B

X

Y

O
M N

P

A B

f(a)
f(a)f(b) f(b)f ( c)

f ( c)
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L.M.V. Theorem Geometrical 

Interpretation
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Verify L.M.V. in following 

cases
Q No. 1 

f(x)= (x-3)(x-5)(x-9)  in interval  [3,5]

Q No. 2

Q No. 3

Find point on the parabola y=(x-3)2

where the tangent is parallel to the chord 
joining (3,0) and (4,1).
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•The  End


